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Instability of rigidly rotating flows to 
non-axisymmetric disturbances 
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(Received 13 August 1973 and in revised form 17  December 1973) 

An investigation of the hydrodynamic stability of swirling flows having arbitrary 
Rossby numbers is described. A necessary condition for instability is derived 
for rigidly rotating flows and this condition is further refined in the specific case 
of a parabolic axial flow. Numerical results are presented for two azimuthal wave- 
numbers corresponding to the maximum growth rates of unstable perturbations 
as a function of Rossby number. It is found that the largest growth rates occur 
when the Rossby number is O( 1) and that instability persists for surprisingly 
large values of this parameter. Previous explanations of the instability mechanism 
are discussed and it is concluded that these are only adequate in the limit of small 
Rossby number. 

1. Introduction 
One usually thinks of rotation as being a stabilizing influence on shear flows 

because of the analogy thet exists between rotating and stratified flows. Thus, for 
axisymmetric disturbances, a swirl component V ( r )  acts upon an axial shear flow 
W ( r )  in much the same manner as would a radial gravitational field. Howard & 
Gupta (1962), in fact, showed that an equivalent 'local Richardson number' 
could be defined for such a swirl flow and stability assured if this quantity wars 
everywhere greater than 4. Significantly, they were not able to determine such 
a stability criterion for non-axisymmetric disturbances. 

Subsequently, Pedley (1 968) investigated the small Rossby number limit (rapid 
rotation) for the rigidly rotating pipe flow with velocity components 

(0, Q k  K[i - (~/~0)21) (1.1) 

in cylindrical co-ordinates {r, 8, z>. I n  that limit, he found that the growth rate of 
the most unstable helical perturbations was proportional to the Rossby number e 
defined by 

This interesting result is suggestive, but not conclusive, in regard t o  the possible 
breakdown of laminar flows because of the assumption that E < 1. What one 
would like to know, especially from a practical standpoint, is what happens 
when 6 is larger. (Clearly, the growth rate attains a inaximum a t  some value of 6 

and then decays to zero as e + CQ, because circular Poiseuille flow without rotation 
is stable.) This question is answered by the numerical results presented in 3 5 ,  

e = H(,/Q;r,. (1.2) 

20-2  
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which show that the instability does turn out to be very powerful a t  finite values 
of the Rossby number. 

The instability of swirling flows has also been studied by Scorer (1967), n-110 

employed a 'localized * analysis. It is difficult to relate Scorer's results to those of 
the normal-mode approach, but instability is predicted for the rotating pipe 
flow and interestingly, as shown in 5 6, the predicted direction of maximum in- 
stability coincides with the corresponding result by Pedley when € < 1. The 
instability mechanism, as described by Scorer, is the well-known centrifugal 
instability when viewed in an appropriate co-ordinate system. A very similar 
argument was given in the appendix of a second paper by Pedley (1969), dealing 
with the viscous case. In  the latter paper, the Rayleigh circulation criterion was 
extended to include flows having a small axial component in the direction of the 
rotation axis. It appears that these ideas can be applied quite successfully in 
flows having small Rossby numbers. However, the necessary condition for in- 
stability derived below, which is valid a t  arbitrary Rossby numbers, is not related 
to Rayleigh's theorem. As discussed in 5 6, the instability mechanism is evidently 
much more complicated in the general case of finite e. 

2. Necessary conditions for instability 

(2.1) form 

where w is complex. A single second-order differential equation has been derived 
by Howard & Gupta (their equation (18)) for u(r). This equation in the special 
case of rigid rotation takes the form 

The radial perturbation velocity for non-axisymmetric disturbances has the 
t2 = u(r) exp { i (kz  +me - wt) } ,  

(2.2) 

y 2 d ( ~ d ( r u ) ) - ( y 2 + y r R  d r  r dr  

where S = r2(m2 + k2r2)-', y = ksR, W ( r )  + niR, - w .  (2.3) 
All quantities have been non-dimensionalized with respect to a characteristic 
length, velocity and frequency denoted by ro, I(, and Q, respectively. The 
characteristic frequency is defined by 

(2.4) 
where e, the Rossby number, is as defined in (1.2). The quantity R is an appro- 
priate characteristic frequency for all values ofs; i.e. in the limit s << 1,21R - a,*, 
while for e 9 1, 24R - Jc/ro. When E = 1, R = sZ,* = W,/ro. Note also that, 
Q, = R,*/Q = ( i ( 1  +s2)}-8 in (2.2) and (2.3). 

If we now follow the approach of Howard & Gupta and make the substitution, 

R = [+(R:2+ W;/r;)]i = R,*[&(1+s2)]4, 

with wi > 0, u = Hy1-11, (2.5) 
equation (2.2) can be put in the form 
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Noting that dX/dr  = 2m2S2/r3, we can rewrite the above equation as 

309 

We first set n = 0, then multiply (2.7) by r&, where the bar denotes the com- 
plex conjugate. Integrating now between t,he boundaries, say r1 and r2 in the 
case of coaxial cylinders, we obtain 

If we write y = yr  + iy,, the imaginary part of (2.8) yields, after multiplication 
by m, 

Because both the quantity in square brackets and the second integral are 
always positive, we find that the quantity my, must be positive somewhere in 
(r1,r2)  for instability ( y ,  + 0) to occur. (The convent.ion that will be employed 
is that k is always positive; however, both m and w, can take either sign.) 

Next, we set n = 1 in (2.7) and again mult,iply by rB and integrate between the 
boundaries to  obtain 

I n  the particular case of fully developed pipe flow, W = 1 - r2, and the imaginary 
part of (2.10) can be written as 

To arrive a t  this result, (2.10) has been multiplied by m and dS/dr expressed in 
terms of S. Since the constant term ( k  + e m )  is in general non-zero, we see that 
for instability my, must be negative somewhere in ( r l ,  r2 ) .  

Thus, in the case of rigidly rotating pipe flow, it has been proved that a 
necessary condition for instability is that  yr = 0 somewhere in (0, I ) .  One physical 
interpretation of this result (there are others) is the following: in a frame of 
reference moving with the axial phase speed of the wave, the mean flow velocity 
vector can be written as 

q = (!20eW-w,/k)e,+Qore,,  (2.12) 
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where q has been non-dimensionalized with respect to Rr,. The wavenumber 
vector k is given by the gradient of a constant-phase surface, i.e. 

k = Vq5 = ke, + (mlr)  e,, (2.13) 

where q5 = kz + mB - w, t and k is dimensionless. It can now be seen that yr = k . q, 
so that for instability to  occur the mean velocity Component in the direction of 
propagation of an unstable perturbation must vanish a t  some value of r. 
Alternatively, we oan consider a fixed value of r and note that the intersection 
of a circular cylinder with a constant-phase surface is a helical curve and the 
foregoing result states that the velocity component normal to  this helix must 
vanish. 

in (2.7), integrating between the boundaries and 
taking the imaginary part of the resulting equation, an upper bound on the 
growth rate of unstable perturbations can be obtained. This was done by Howard 
& Gupta and the dimemionless equivalent of their equation (22) takes the form 

Finally, by setting n = 

(2.14) 

in the case of rigidly rotating pipe flow. This result is very important because 
it shows that, if instability is directly related to  the perturbation being non- 
axisymmetric ( m  -+ 0 ) ,  then m has to be negative. As pointed out by Dr T. J. 
Pedley, the quantity on the right-hand side of (2.14) reaches its maximum a t  
r = 1, so that, in the unstable case, 

(2.15) 

Thus, a further necessary condition for inst,ability is t,hat, 

- m/k > (4  - e2)/4s. (2.16) 

3. Solution in the limit of small Rossby number 
The results obtained in this section are equivalent to those derived previously 

by Pedley (1968), whose approach was to  reduce the governing equation to 
Sturm-Liouville form. Here, i t  is shown how the results of fj 2 can be employed 
to  arrive more directly a t  the same solution. 

First, consider the inequality (2.14) and note that, in the case 8 < 1 ,  the quantity 
in square brackets can only be positive if k/m is O ( E )  or smaller. However, if we 
take k/m -g 1 ,  the maximum possible growth rate will be proportional to klm; 
this suggests that  to  obtain maximum instability we take k/m - O(s)  and not 
less. Combining this observation with the result proved above, that y, = 0 
somewhere in the unstable case, we see that 

yr = mQo-ur = 0, (3.1) 
because the first term in yr (see (2.3)) is O(a2). Equation (3. I ) ,  in conjunction with 
the observation t.hat m will be negative in the unstable case, tells us that growing 
modes spiral in the same direction as t,he basic flow rotation but propagate 
upstream in the axial direct,ion with an axial phase speecl O(s-'). 
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Employing the approximations suggested above, we now have S E r2/m2 and 
y N - iwi, and ( 2 . 2 )  becomes, in the case W = 1 - r2,  

d2 - (zcr) + - - 
dr2 r dr 

4 4  Ic + em) !2,2 
(ur)  - [ {IJ: 

This is simply Bessel’s equation of order m, so that the solution for u(r )  that is 
bounded a t  r = 0 is given by 

u(r) = r-IJ,(hr), where h2 = - 4 IcQ~(k+em) /w~ ,  (3.3) 

and J, is a Bessel function of the first kind. Permissible values of h are those 
coinciding with the zeros of the Bessel function as the boundary condition 
u(1) = 0 is then satisfied. These values can be found readily from tables be- 
cause m, the azimuthal wavenumber, is always an integer. 

Rewriting (3.3) as w: = -4kQ:(E+em)/h2, we see that the fastest-growing 
waves correspond to the first zero, i.e. the smallest value of A. The largest 
(absolute) values of m lead to  the largest growth rates and, for specified values 
of m and e,  the axial wavenumber leading to the largest growth rate is 

k = -&em. (3-4) 

Additionally, it can now be verified that, for the most unstable perturbations, 
wi - O(e)  as suggested by (2.14). By employing (3.4) and noting from (2.4) that 
R, 21 21, we obtain finally 

wjmax = 2klmI/h. (3.5) 

Recall, however, that the foregoing results are limited to inviscid flow with 
c < 1. At finite Reynolds numbers, the damping effect of viscosity will be greatest 
for short waves, so the conclusion that the largest values of m correspond to the 
largest growth rates will be modified. I n  fact, it was found by Pedley (1969) 
that, as the Reynolds number increases, t h e  first mode to be destabilized is the 
m = - 1 mode, this occurring a t  a Reynolds number of 82-9. Joseph & Carmi 
(1969) also obtained approximately the same value using the energy method. 
The most notable deviations from the results of Pedley (1968), however, are 
those occurring a t  finite values of the Rossby number, as shown below. 

4. Numerical procedure in the general case 
The equation to be solved is ( 2 . 2 ) )  which, in the case W = 1 - rp ,  takes the form 

with thv boundary conditions 

( 4 4  
u(0) = u(1) = 0 when lrnl > I ,  
u’(0) = u(1) = 0 when /ml = 1. 
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The point r = 0 requires special consideration owing to  the regular singularity 
occurring there. Expanding about this point by the method of Frobenius, we 
find that the solut,ion bounded a t  r = 0 behaves for small r like 

Because u(0) = u'(0) = 0 according to (4.3) (except when m = - l ) ,  i t  is 
necessary to  begin the integration a t  a finite value of r .  It was found that satis- 
factory results were obtained by starting the integration a t  = 0.10 or r = 0.20. 
The procedure employed was t o  compute starting values for u and u' from (4.3) 
and then to  integrate (4.1) out to r = 1 using a fourth-order Runge-Kutta 
procedure and double-precision complex arithmetic. 

I n  the eigenvalue problem associated with (4.1)-(4.3), all but two of the various 
parameters can be specified independently. Accordingly, k ,  E ,  m and Q0 were 
selected in advance; a two-variable Newton-Raphson iteration subroutine was 
then employed to find those values of w, and wi for which the boundary con- 
dition u( 1) = 0 was satisfied. This represents, of course, two conditions because 
both the real and imaginary part of u( 1) must vanish. 

The computations were begun a t  small values of E in order that the solution 
(3.1)-(3.5) could be used to provide starting guesses for w, and wi. As E was 
increased, previous solutions were used to estitnate the magnitude of wi, while 
w, could be determined closely from the condition that yr = 0 somewhere in ( 0 , l ) .  

An interesting numerical difficulty that arises in this problem is associated 
with the multiple zeros of the eigenfunction. I n  the limit E < I, u( r )  can be taken 
to  be real and from (3.3) i t  is clear that the lowest zero of the Bessel function 
will lead to  t.he largest growth rate. It seems likely that with E - O( 1) the most 
unstable mode will still correspond to the 'fist zero'. However, u(r) is now 
complex and solutions exist, for example, in which the condition u(1) = 0 is 
satisfied by the first zero of u, and the second zero of ui. In  many cases, such a 
solution can be converted into one where the lowest mode does correspond to 
the f i s t  zero for both u, and ui by a suitable choice of the arbitrary constant 
multiplying u. (It was found that setting A = 1 + 0.26i in (4.3) worked well for 
the parameter range investigated.) However, i t  was not always possible t,o do 
this; therefore, E had to  be increased slowly in making the numerical computations 
in order to ensure t,hat the same solution was being followed continuously. 

5. Numerical results 
Maximum growth rates have been determined as a function of the Rossby 

number E for two values of m, these being m = - 4 and m = - 1 .  As noted in 
5 3, growth rates increase with Jml in the small-c case. However, the numerical 
results showed little variation with m for (m(  2 2 a t  finite values of E ;  hence, 
apart from the qualitatively different case nt = - 1, only the results for m = - 4 
are presented here as these are quite represent,ative. 
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FIGURE 1. Maximum amplification factor us. Rossby number for an 
azimuthal wavenumber m = - 4. 

2.0 3.0 4.0 5 0  6.0 7.0 8.0 
8 

FIGURE 2. Axial wavenumber €or fastest-growing waves as a function of 
Rossby number with m = constant. 

I n  figure 1,  the maximum values of wi are shown as a function of e. It is seen 
that the largest growth rate of wi = 0.296 occurs at e = 0.80. The most striking 
features of the results in this figure are the strength of the instability a t  O(1) 
Rossby number as measured by the magnitude of wi and its persistence a t  very 
large values of e. Shown for comparison is the prediction of the small-e analysis 
as given by (3.5). 

For each value of e,  with m held constant, a range of values of Ic was con- 
sidered in order to find the axial wavenumber corresponding to the largest, 
growth rate. These results are illustrated in figure 2 for the cases m = - 1 and 
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FIGURE 3. Maximum amplification factor 218. Rossby number for the 
sinuous mode, m = - 1. 
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- 4  
- 4  
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0-5 
1.0 
2.0 
4.0 
6.0 
8.0 
0.5 
1.0 
2.0 
4-0 
6.0 
8.0 

k 
0.22 
0.32 
0.34 
0.20 
0.14 
0.1 1 
0.64 
0.66 
0.49 
0.28 
0.20 
0.15 

"r 

- 1.183 
- 0.815 
- 0.395 
- 0.199 
-0.132 
- 0.096 
- 4.876 
- 3.715 
- 2.273 - 1.225 
-0.817 
- 0.616 

TABLE 1. Eigenvalues for the most m t a b l e  waves 

" i  

0.1542 
0.2083 
0.1818 
0.1109 
0.0770 
0.0586 
0.2636 
0.2938 
0.2176 
0-1247 
0.0854 
0.0647 

ni = - 4 .  The value of k corresponding to a particular value of E in figure 1 is 
found from the m = - 4 curve in figure 2 a t  the same value of E .  Again the pre- 
diction of the analysis with E < 1, i.e. equation (3.4),  is shown for comparison. 

The second case studied in detail, m = - 1, is of particular interest for two 
reasons. First of all, it is the 'sinuous mode' in which the radial velocity at the 
centre of the pipe is non-zero (but continuous). The eigenfunction, as a result, 
has a considerably different structure with the maximum perturbation energy 
occurring a t  r = 0. Second, a t  finite Reynolds numbers, i t  seems likely that this 
mode will have the lowest 'critical Reynolds number' for all values of E .  (This 
conclusion seems to  be supported by the viscous calculations of Mackrodt (1973), 
which were recently called to the present author's attention by Professor P. G .  
Saffman.) 

The numerical results for wi are shown in figure 3, which has the same quali- 
tative behaviour as figure 1. For small values of E the growth rates of the sinuous 
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mode are noticeably less than those of the m = -4 mode, but the difference 
between the two decreases as e rises. At e = 2 ,  for example, wi is only 16 yo lower 
when m = - 1.  The largest growth rate occurs a t  e = 1.25, this being wi = 0.210. 

Some of the computed eigenvalues are given in table 1. Note that in all cases 
w, is negative, so that the unstable waves propagate upstream in the axial 
direction, although more slowly than in the small-s limit. This characteristic 
is somewhat reminiscent of a result proved by Acheson (1972), namely that 
unstable non-axisymmetric hydromagnetic waves must propagate westward in 
the azimuthal direction in the case of flow in a rotating annulus. 

6. Discussion 
The primary result of the numerical calculations is that  the growth rate of 

unstable helical perturbations is very large when the Rossby number is O( 1). 
Previously, Pedley (1968) had shown that an amplification factor of O(e) was 
possible in the limiting case s < 1. Such instabilities do not necessarily ensure 
transition to turbulence because the effects of viscosity and nonlinearity are 
damping; i.e. a finite amplitude equilibrium state is likely for modes whose 
linear amplification rates are not substantial. However, the growth rates illus- 
trated in figures 1 and 3 are so large that there can be no doubt that the instability 
mechanism associated with non-axisymmetric disturbances is a powerful one. 

Also of interest is the persistence of the instability for s 9 I and the rapid 
variation of wi with e when s is O( 1). This undoubtedly is an important part of 
the explanation for the poor quantitative agreement between the results of 
Pedley (1969) and the experiments of Nagib et al. (1971). It appears that the 
Rossby numbers in these experiments ranged from O( 1)  to very large values. 

The approximate solution for E < 1 is seen in figures 1-3 to deviate markedly 
from the numerical solution of the full equation when e is greater than 0-3. This 
seems, a t  first, surprising because (3.2) is an accurate approximation (to O ( s 2 ) )  
of the full equation (4.1). However, the failure of the approximation is actually 
associated with the result y, = 0 stated in (3.1). Because mQ,-w, = 0 in the 
solution for e < 1, the neglected term, IcQ0eW, although O(e2), is really not all 
that small in comparison with mQo - w,. The results of the solution are, of course, 
still valuable because they reveal the existence of the instability and provide 
starting values for the numerical computations. 

The matter of primary interest is to gain an understanding of the mechanism 
of this instability. In  the appendix of the paper by Pedley (1969), it was argued 
on the basis of some flows qualitatively similar to the rotating pipe flow that 
the mechanism of instability was simply the centrifugal instability first explained 
by Rayleigh. (Here, we shall avoid the term ‘inertial instability’ employed by 
Pedley in order to prevent confusion with the non-rotating case.) I n  the examples 
discussed by Pedley, the Rayleigh circulation criterion was extended to swirl 
flows by restating the result as being that instabilit,y occurred if the mean 
vorticity component in the direction of the wavenumber vector was negative a t  
some value of r. 

That argument, with some modification, can also be applied to the rotating 



31G S. A .  Maslowe 

pipe flow with an interesting result. To adapt Rayleigh's t'heorem in the present 
case, recall that in rotating Couette flour, for example, the axial phase speed of 
unstable perturbations is zero. Here, let us consider the flow in a system propa- 
gating in the z direction a t  the speed of the wave so that the apparent axial phase 
speed is zero. The non-dimensional vorticity is given by 

V x q = 2Ro(ez +we,) (6.1) 

and, if we now apply the modified Rayleigh criterion as stated by Pedley, we 
find that 

(6.') 

for instability to occur. If we compare ( 6 . 2 ) ,  which is a result apparently not 
restricted to the case of small E ,  with (3 .3)  it is clear that satisfaction of the 
criterion ( 6 . 2 )  does, in fact, lead to instability in the small-e case. 

It seems unlikely that this result is purely coincidental; on the other hand it 
also is very doubtful that such a simple argument will work in general when 6 

is finite. For one thing, the necessary condition for instability derived in $ 2  is 
applicable in the general case and does not seem t o  be directly related to (6.2).  
(It must be conceded though that there were no cases of instability in the 
numerical calculations where ( 6 . 2 )  was violated.) One reason for regarding ( 6 . 2 )  
uith suspicion, however, is that  this type of reasoning seems to lead to a con- 
clusion in the local stability analysis of Scorer (1967) that is correct for small E ,  

but grossly in error for finite values of c .  Scorer considered the generation of 
unstable vortical motions for flows of the type considered here by analysing 
locally the effect of rotational displacements of a fluid 'parcel'. According to  
Scorer's analysis, the direction of maximum instability in a helical flow is along 
the bisector of the axis of the helix and the mean flow vorticity vector. 

We can translate this statement into the terms of a normal-mode analysis 
in the following way: according to  ( 6 .  l), the angle between the axis of the cylinder 
and the vorticity vector is given by 

k . ( V x q )  = 2 Q 0 ( k + ~ m )  < 0 

8 = tan-l w. (6.3) 

The axis of an unstable vortex, if the vortices are spaced periodically, makes an 
angle 

k /3 = tan-1 - 
( - mb-1 

with the cylinder axis, assuming m is negative. Scorer's result states that /3 = 48, 
which for E < 1 and k = O(s) yields the result 

k = -+em, (6.5) 

which is identical to (3.4). This interesting correspondence between the results 
of Scorer and Pedley does not seem to have been noticed previously. Scorer, how-- 
ever, goes on to predict that /3 increases continuously with G and that in the large 
Rossby number limit /3 = 45'. This is clearly incorrect in the case studied here 
as can be seen from figure 2,  where k/( - m) does not increase indefinitely with E .  

This failure of the localized analysis is not too surprising because such an 
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approach is only valid for large wavenumbers. While the notion of modifying 
Rayleigh’s criterion is appealing, it seems that the real situation in the general 
case is more complicated than that. The necessary condition for instability 
derived here seems to  shed little light on the physical mechanism, although i t  is 
certainly suggestive because singular neutral modes are often associated with 
instability. I n  that respect, the effect of rotation is somewhat similar to  the 
influence of stable density stratification or viscosity, where an apparently 
stabilizing influence leads to an instability through some mechanism that is 
only vaguely understood. 

The author is greatly indebted to Professor Louis Howard and Professor MBrten 
Landahl of M.I.T. for arousing his interest in this problem and for their helpful 
discussions of the results. This research was partially supported by the U.S. 
National Oceanic and Atmospheric Administration and by the National Research 
Council of Canada. 
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